Sunday, September 25, 2016

THE SIBERIAN TIGER WHITE

The Siberian tiger (Panthera tigris altaica), also known as the Amur tiger, is a tiger subspecies inhabiting mainly the Sikhote Alin mountain region with a small population in southwest Primorye Province in the Russian Far East. The Siberian tiger once ranged throughout all of Korea, north-eastern China, Russian Far East, and Eastern Mongolia. In 2005, there were 331–393 adult and subadult Amur tigers in this region, with a breeding adult population of about 250 individuals. The population had been stable for more than a decade due to intensive conservation efforts, but partial surveys conducted after 2005 indicate that the Russian tiger population was declining.[1] By 2015, the Siberian tiger population had increased to 480–540 individuals in the Russian Far East, including 100 cubs.[2][3] A more detailed census revealed a total population of 562 wild Siberian tigers in Russia.[4]
The Siberian tiger and Bengal tiger subspecies rank among the biggest living cats.[5][6] An average adult male Siberian outweighs an average adult male lion by around 45.5 kg (100 lb).[7] A comparison of data on body weights of Siberian tigers indicates that up to the first half of the 20th century both males and females were on average heavier than post-1970 ones. Today's wild Siberian tigers are smaller than Bengal tigers. Their reduced weight as compared to historical Siberian tigers may be due to a combination of causes: when captured, they were usually sick or injured and involved in a conflict situation with people.[8]
Results of a phylogeographic study comparing mitochondrial DNA from Caspian tigers and living tiger subspecies indicate that the common ancestor of the Amur and Caspian subspecies colonized Central Asia from eastern China via the GansuSilk Road corridor from eastern China, and then subsequently traversed Siberia eastward to establish the Amur tiger population in the Russian Far East.[9]

 

 P.t.altaica Tomak Male.jpg

Characteristics


Captive Siberian tiger

A Siberian tigress
The Siberian tiger is reddish-rusty, or rusty-yellow in color, with narrow black transverse stripes. The body length is not less than 150 cm (60 in), condylobasal length of skull 250 mm (10 in), zygomatic width 180 mm (7 in), and length of upper carnassial tooth over 26 mm (1 in) long. It has an extended supple body standing on rather short legs with a fairly long tail.[10] It is typically 5–10 cm (2–4 in) taller than the Bengal tiger, which is about 107–110 cm (42–43 in) tall.

 

 Image result for siberian tiger white

 

Body size

 Image result for siberian tiger white


The largest male, with largely assured references, measured 350 cm (140 in) "over the curves", equivalent to 330 cm (130 in) "between the pegs". The tail length in fully grown males is about 1 m (39 in). Weights of up to 318 kg (701 lb) have been recorded and exceptionally large males weighing up to 384 kg (847 lb) are mentioned in the literature, but according to Mazák, none of these cases can be confirmed via reliable sources.[11] Mazák indicates the typical weight range of Siberian tigers as 180–306 kg (397–675 lb) for males and 100–167 kg (220–368 lb) for females.[5]
Exceptionally large individuals were targeted and shot by hunters.[12] An unconfirmed report tells of a male tiger shot in the Sikhote-Alin Mountains in 1950 weighing 384 kg (847 lb) with an estimated length of 3.48 m (11.4 ft). In some cases, captive Siberian tigers reached a body weight of up to 465 kg (1,025 lb), such as the tiger "Jaipur."[13]
Measurements taken by scientists of the Siberian Tiger Project in Sikhote-Alin range from 200–450 cm (79–177 in) in head and body length measured in straight line, with an average of 195 cm (77 in) for males; and for females ranging from 167 to 182 cm (66 to 72 in) with an average of 174 cm (69 in). The average tail measures 99 cm (39 in) in males and 91 cm (36 in) in females. The longest male measured 309 cm (122 in) in total length (tail of 101 cm (40 in)) and had a chest girth of 127 cm (50 in). The longest female measured 270 cm (110 in) in total length (tail of 88 cm (35 in)) and had a chest girth of 108 cm (43 in). These measurements show that the present Amur tiger is longer than the Bengal tiger and the African lion.[14]
In 2005, a group of Russian, American and Indian zoologists published an analysis of historical and contemporary data on body weights of wild and captive tigers, both female and male across all subspecies. The data used include weights of tigers that were older than 35 months of age and measured in the presence of authors. The results of this analysis indicates that the average historical wild male Siberian tiger weighed 215.3 kg (475 lb) and the female 137.5 kg (303 lb); the contemporary wild male Siberian tiger weighs 176.4 kg (389 lb) on average with an asymptotic limit being 222.3 kg (490 lb); a wild female weighs 117.9 kg (260 lb) on average. Historical Siberian tigers and Bengal tigers were the largest ones, whereas contemporary Siberian tigers are lighter than Bengal tigers, on average. The reduction of the body weight of today's Siberian tigers may be explained by concurrent causes, namely the reduced abundance of prey due to illegal hunting and that the individuals were usually sick or injured and captured in a conflict situation with people.[8] A male captured by members of the Siberian Tiger Project weighed 206 kg (454 lb), and the largest male radiocollared weighed 212 kg (467 lb).[15][16]

 Image result for siberian tiger white

 Skull

 Image result for siberian tiger white


The skull of the Siberian tiger is characterized by its large size, and is similar to the skull of a lion. It differs in the structural features of the lower jaw and relative length of nasals. The facial region is very powerful and very broad in the region of the canines.[10] The skull prominences, especially sagittal crest and crista occipitalis are very high and strong in old males, and often much more massive than usually observed in the biggest skulls of Bengal tigers. The size variation in skulls of Siberian tigers ranges from 331 to 383 mm (13.0 to 15.1 in) in nine individuals measured. A female skull is always smaller and never as heavily built and robust as that of a male. The height of the sagittal crest in its middle part reaches as much as 27 mm (1.1 in), and in its posterior part up to 46 mm (1.8 in).[17]
Female skulls range from 279.7 to 310.2 mm (11.01 to 12.21 in). The skulls of male Turanian tigers from Turkestan had a maximum length of 297.0 to 365.8 mm (11.69 to 14.40 in), while that of females measured 195.7 to 255.5 mm (7.70 to 10.06 in). A tiger killed on the Sumbar River in Kopet-Dag in January 1954 had a greatest skull length of 385 mm (15.2 in), which is considerably more than the known maximum for this population and slightly exceeds that of most Siberian tigers. However, its condylobasal length was only 305 mm (12.0 in), smaller than those of the Siberian tigers, with a maximum recorded condylobasal length of 342 mm (13.5 in).[14] The biggest skull of a Siberian tiger from northeast China measured 406 mm (16.0 in) in length, which is about 20–30 mm (0.79–1.18 in) more than the maximum skull lengths achieved by tigers from the Amur region and northern India.[18]

Siberian tiger cub

Fur and coat

 Image result for siberian tiger white


The ground colour of Siberian tigers' pelage is often very pale, especially in winter coat. However, variations within populations may be considerable. Individual variation is also found in form, length, and partly in colour, of the dark stripes, which have been described as being dark brown rather than black.[17]
The fur of the Siberian tiger is moderately thick, coarse and sparse compared to that of other felids living in the former Soviet Union. Compared to the now-extinct westernmost populations, the Far Eastern Siberian tiger's summer and winter coats contrast sharply with other subspecies. Generally, the coat of western populations was brighter and more uniform than that of the Far Eastern populations. The summer coat is coarse, while the winter coat is denser, longer, softer, and silkier. The winter fur often appears quite shaggy on the trunk, and is markedly longer on the head, almost covering the ears. The whiskers and hair on the back of the head and the top of the neck are also greatly elongated. The background color of the winter coat is generally less bright and rusty compared to that of the summer coat. Due to the winter fur's greater length, the stripes appear broader with less defined outlines. The summer fur on the back is 15–17 mm (0.59–0.67 in) long, 30–50 mm (1.2–2.0 in) along the top of the neck, 25–35 mm (0.98–1.38 in) on the abdomen, and 14–16 mm (0.55–0.63 in) on the tail. The winter fur on the back is 40–50 mm (1.6–2.0 in), 70–110 mm (2.8–4.3 in) on the top of the neck, 70–95 mm (2.8–3.7 in) on the throat, 60–100 mm (2.4–3.9 in) on the chest and 65–105 mm (2.6–4.1 in) on the abdomen. The whiskers are 90–115 mm (3.5–4.5 in).[10]

 

 Image result for siberian tiger white

 Distribution and habitat

 Image result for siberian tiger white




The Siberian tiger once inhabited the Korean Peninsula, Manchuria and other parts of north-eastern China, the eastern part of Siberia and the Russian Far East, perhaps as far west as Mongolia and the area of Lake Baikal, where the Turan tiger also reportedly occurred.[10] The geographical range of Amur tigers in the Russian Far East stretches south to north for almost 1,000 km (620 mi) the length of Primorsky Krai and into southern Khabarovsk Krai east and south of the Amur River. They also occur within the Greater Xing'an Range, which crosses into Russia from China at several places in southwest Primorye. In both regions, peaks are generally 500 to 800 m (1,600 to 2,600 ft) above sea level, with only a few reaching 1,000 m (3,300 ft) or more. This region represents a merger zone of two bioregions: the East Asian coniferous-deciduous complex and the northern boreal complex, resulting in a mosaic of forest types that vary with elevation, topography, and history. Key habitats for the Amur tiger are Korean pine broadleaf forests with a complex composition and structure.[19]
The faunal complex of the region is represented by a mixture of Asian and boreal life forms. The ungulate complex is represented by seven species, with Manchurian wapiti, Siberian roe deer, and wild boar being the most common throughout the Sikhote-Alin mountains but rare in higher altitude spruce-fir forests. Sika deer are restricted to the southern half of the Sikhote-Alin mountains. Siberian musk deer and Amur moose are associated with the conifer forests and are near the southern limits of their distribution in the central Sikhote-Alin mountains.[20]
The number of Amur tigers in China is estimated at 18–22. In 2005, there were 331–393 Amur tigers in the Russian Far East, comprising a breeding adult population of about 250, fewer than 100 likely to be sub-adults, more than 20 likely to be less than 3 years of age. More than 90% of the population occurs in the Sikhote Alin mountain region.[1]
An unknown number of tigers survive in the reserve areas around Baekdu Mountain, based on tracks and sightings.[21]
In April 2014, World Wide Fund for Nature personnel captured a video of a Siberian tigress with cubs in inland China.[22]
In December 2015, Siberian tigers have been spotted in the Jilin Province of Northeast China, showing signs of expansion of Siberian tiger range in the region of inland China. It is estimated that 27 Siberian tigers live in Jilin Province.[23]

 Image result for siberian tiger white

 Ecology and behavior


Taxidermy exhibit portraying a Siberian tiger fighting a brown bear, Vladivostok Museum
Siberian tigers are known to travel up to 1,000 km (620 mi), a distance that marks the exchange limit over ecologically unbroken country.[10]
In 1992 and 1993, the maximum total population density of the Sikhote-Alin tiger population was estimated at 0.62 tigers in 100 km2 (39 sq mi). The maximum adult population estimated in 1993 reached 0.3 tigers in 100 km2 (39 sq mi), with a sex ratio of averaging 2.4 females per male. These density values were much lower than what had been reported for other subspecies at the time.[24]
In 2004, dramatic changes in land tenure, density, and reproductive output in the core area of the Sikhote-Alin Zapovednik Siberian Tiger Project were detected, suggesting that when tigers are well protected from human-induced mortality for long periods, the density of female adults may increase dramatically. When more adult females survived, the mothers shared their territories with their daughters once the daughters reached maturity. By 2007, density of tigers was estimated at 0.8±0.4 tigers in 100 km2 (39 sq mi) in the southern part of Sikhote-Alin Zapovednik, and 0.6±0.3 tigers in 100 km2 (39 sq mi) in the central part of the protected area.[25]

Reproduction and life cycle


A Siberian tigress with a cub at Buffalo Zoo
Siberian tigers mate at any time of the year. A female signals her receptiveness by leaving urine deposits and scratch marks on trees. She will spend 5 or 6 days with the male, during which she is receptive for three days. Gestation lasts from 3 to 3½ months. Litter size is normally two or four cubs but there can be as many as six. The cubs are born blind in a sheltered den and are left alone when the female leaves to hunt for food. Cubs are divided equally between sexes at birth. However, by adulthood there are usually two to four females for every male. The female cubs remain with their mothers longer, and later they establish territories close to their original ranges. Males, on the other hand, travel unaccompanied and range farther earlier in their lives, making them more vulnerable to poachers and other tigers.[26]
However, Wildlife Conservation Society camera trapped an adult male and female Siberian tiger with three cubs.[27]
At 35 months of age, tigers are subadults. Males reach sexual maturity at the age of 48 to 60 months.[28][29]

 Image result for siberian tiger white

 

Feeding ecology

 Image result for siberian tiger white



Prey species of Siberian tigers include Manchurian wapiti, Siberian musk deer, long-tailed goral, moose, Siberian roe deer, Manchurian sika deer, wild boar, even sometimes small size Asian black bear and Ussuri brown bear. also smaller species like hares, rabbits, pikas and salmon.[11][19][30]
Between January 1992 and November 1994, 11 tigers were captured, fitted with radio-collars and monitored for more than 15 months in the eastern slopes of the Sikhote-Alin mountain range. Results of this study indicate that their distribution is closely associated with distribution of wapiti, while distribution of wild boar was not such a strong predictor for tiger distribution. Although they prey on both Siberian roe deer and sika deer, overlap of these ungulates with tigers was low. Distribution of moose was poorly associated with tiger distribution. The distribution of preferred habitat of key prey species was an accurate predictor of tiger distribution.[19]
Results of a three-year study on Siberian tigers indicate that the mean interval between their kills and estimated prey consumption varied across seasons: during 2009 to 2012, three adult tigers killed prey every 7.4 days in summer and consumed a daily average of 7.89 kg (17.4 lb); in winter they killed more large-bodied prey, made kills every 5.7 days and consumed a daily average of 10.3 kg (23 lb).[31]
When all sizes of prey are abundant, Siberian tigers prefer to target smaller prey.

Image result for siberian tiger white

Interspecific predatory relationships

Image result for siberian tiger white



Following a decrease of ungulate populations from 1944 to 1959, more than 32 cases of Amur tigers attacking both brown and Asian black bears were recorded in the Russian Far East, and hair of bears were found in several tiger scat samples. Tigers attack Asian black bears less often than brown bears, as latter live in more open habitat and are not able to climb trees. In the same time period, four cases of brown bears killing female and young tigers were reported, both in disputes over prey and in self-defense. Tigers can tackle bears larger than themselves, using an ambushing tactic and jumping on to the bear from an overhead position, grabbing it by the chin with one fore paw and by the throat with the other, and then killing it with a bite in the spinal column. Tigers mainly feed on the bear's fat deposits, such as the back, hams, and groin.[10]
Amur tigers regularly prey on young bears and sub-adult brown bears. Reports of preying on fully grown small female adult Ussuri brown bears by a big male tiger are common as well.[12][30] Predation by tigers on denned brown bears was not detected during a study carried between 1993 and 2002.[32] Ussuri brown bears, along with the smaller Asian black bears constitute up to 40.7% of the Siberian tiger's diet.[33] Brown bears alone constitute up to 18.5% of their diet depending on the locations.[10][33][34] Certain tigers have been reported to imitate the calls of Asian black bears to attract them.[35]
Geptner and Sludskii (1972) stated that bears were generally afraid of tigers, and changed their path after coming across tiger trails.[10] In the winters of 1970–1973, Yudakov and Nikolaev recorded two cases of bears showing no fear of tigers and another case of a brown bear changing path upon crossing tiger tracks.[36] Other researchers have observed bears following tiger tracks for various reasons.[33] Despite the threat of predation, some brown bears actually benefit from the presence of tigers by appropriating tiger kills that the bears may not be able to successfully hunt themselves.[33] Brown bears generally prefer to contest the much smaller female tigers.[37] During telemetry research in the Sikhote-Alin protected area, 44 direct confrontations between the two predators were observed, in which brown bears were killed in 22 cases, and tigers in 12 cases.[38] Bears frequently track down tigers to usurp their kills, with fatal outcomes for the tiger.[39] There are reports of Brown bears specifically targeting Amur tigers and leopards to abstract their prey. In the Sikhote-Alin reserve, 35% of tiger kills were stolen by bears, with tigers either departing entirely or leaving part of the kill for the bear.[40] A report from 1973 describes twelve known cases of brown bears killing tigers; in all cases the tigers were eaten by the bears.[41]
Tigers depress wolves' numbers, either to the point of localized extinction or to such low numbers as to make them a functionally insignificant component of the ecosystem. Wolves appear capable of escaping competitive exclusion from tigers only when human pressure decreases tiger numbers. In areas where wolves and tigers share ranges, the two species typically display a great deal of dietary overlap, resulting in intense competition. Wolf and tiger interactions are well documented in Sikhote-Alin, where until the beginning of the 20th century, very few wolves were sighted. Wolf numbers may have increased in the region after tigers were largely eliminated during the Russian colonization in the late 19th century and early 20th century. This is corroborated by native inhabitants of the region claiming that they had no memory of wolves inhabiting Sikhote-Alin until the 1930s, when tiger numbers decreased. Today, wolves are considered scarce in tiger habitat, being found in scattered pockets, and usually seen travelling as loners or in small groups. First hand accounts on interactions between the two species indicate that tigers occasionally chase wolves from their kills, while wolves will scavenge from tiger kills. Tigers are not known to prey on wolves, though there are four records of tigers killing wolves without consuming them.[42] Tigers recently released are also said to hunt wolves.[43]
This competitive exclusion of wolves by tigers has been used by Russian conservationists to convince hunters in the Far East to tolerate the big cats, as they limit ungulate populations less than wolves, and are effective in controlling wolf numbers.[44]
Siberian tigers also compete with the Eurasian lynx and may occasionally kill and eat them. In March, 2014, a dead lynx was discovered in Bastak Nature Reserve by park workers of the Wildlife Conservation Society that bore evidence of predation by a Siberian tiger. The lynx had apparently been ambushed, pursued, and killed by the tiger but only partially consumed, which indicates that the tiger might have been more intent on eliminating a competitor than on catching prey. This incident marks the first documented case of predation of a lynx by a tiger.[45]

Threats

A broad genetic sampling of 95 wild Russian tigers found markedly low genetic diversity, with the effective population size extraordinarily low in comparison to the census population size, with the population behaving as if it were just 27–35 individuals. Further exacerbating the problem is that more than 90% of the population occurs in the Sikhote Alin mountain region, and there is little movement of tigers across the development corridor, which separates this sub-population from the much smaller sub-population found in southwest Primorye province.[46]
The winter of 2006–2007 was marked by heavy poaching.[25] Poaching of tigers and their wild prey species is considered to be driving the decline, although heavy snows in the winter of 2009 could have biased the data.[1]

 Image result for siberian tiger white

 

Threats in the past


Image result for siberian tiger white
 In the early years of the Far Eastern Front in the Russian Civil War, both Red and White armies based in Vladivostok nearly wiped out the local Siberian tigers. In 1935, when the Chinese Beiyang Army was driven back across the Amur and the Ussuri, the tigers had already withdrawn from their northern and western range. The few that remained in the Greater Xing'an Range were cut off from the main population by the building of railroads. Within a few years, the last viable Siberian tiger population in Russia was confined to Ussuriland. At this time it was on the brink of extinction with only about 40 remaining animals in the wild. Legal tiger hunting within the Soviet Union continued until 1947 when it was officially prohibited. Under the Soviet Union, anti-poaching controls were strict and a network of protected zones (zapovedniks) were instituted, leading to a rise in the population to several hundred. After the dissolution of the Soviet Union, illegal deforestation and bribery of park rangers made the poaching of Siberian tigers easier. Local hunters had access to a formerly sealed off lucrative Chinese market and this once again put the subspecies at risk from extinction.[26] While an improvement in the local economy has led to greater resources being invested in conservation efforts, an increase in economic activity has led to an increased rate of development and deforestation. The major obstacle in preserving the species is the enormous territory individual tigers require (up to 450 km2 is needed by a single female and more for a single male).[47]
Decades of development and war have destroyed the population in Korea. Heat sensing camera traps set up in the Demilitarized Zone in South Korea did not record any tigers.[48]

 Image result for siberian tiger white

 

Conservation

 Image result for siberian tiger white


Three orphaned Siberian tigers rescued after their mothers were killed by poachers are released back to the wild in Russia.
Tigers are included on CITES Appendix I, banning international trade. All tiger range states and countries with consumer markets have banned domestic trade as well.[49] At the 14th Conference of the Parties to CITES in 2007, stronger enforcement measures were called for, as well as an end to tiger farming.[50]
In 1992, the Siberian Tiger Project was founded, with the aim of providing a comprehensive picture of the ecology of the Amur tiger and the role of tigers in the Russian Far East through scientific studies. By capturing and outfitting tigers with radio collars, their social structure, land use patterns, food habits, reproduction, mortality patterns and their relation with other inhabitants of the ecosystem, including humans is studied. These data compilations will hopefully contribute toward minimizing poaching threats due to traditional hunting. The Siberian Tiger Project has been productive in increasing local capacity to address human-tiger conflict with a Tiger Response Team, part of the Russian government’s Inspection Tiger, which responds to all tiger-human conflicts; by continuing to enhance the large database on tiger ecology and conservation with the goal of creating a comprehensive Siberian tiger conservation plan; and training the next generation of Russian conservation biologists.[51]
In August 2010, China and Russia agreed to enhance conservation and cooperation in protected areas in a transboundary area for Amur tigers. China has undertaken a series of public awareness campaigns including celebration of the first Global Tiger Day in July 2010, and International Forum on Tiger Conservation and Tiger Culture and China 2010 Hunchun Amur Tiger Culture Festival in August 2010.[52]
In December 2010, the Wildlife Conservation Society (WCS Russia) and Phoenix Fund initiated a project in co-operation with the Zoological Society of London (ZSL) to improve the protection of tigers and prey species in four key-protected areas, namely Lavovsky Nature Reserve, Sikhote Alin Nature Reserve, Zov Tigra National Park and Kedrovaya Pad - Leopardovii Protected Area. The project consists of the following components.
  1. monitoring patrol routes and law enforcement results with the patrol monitoring system MIST which is based on GIS-technique
  2. support for patrol teams (fuel, spare parts, maintenance for vehicles and ranger outfits)
  3. bonuses for patrol teams that perform well
The first project results indicate a success. Patrol efforts (measured by total time spent on patrols and distance of foot patrols) in the two protected areas where the project started first (Kedrovaya Pad - Leopardovii and Lazovsky protected areas) have increased substantially. This was established by comparing the patrol data of the 1st quarter of 2011 with the 1st quarter of 2012. Patrol law enforcement results (confiscated fire arms, citations for poaching and other violations as well as fines) have also increased markedly (this was established by comparing the results of the two protected areas in 2011 to previous years).[citation needed]

 Image result for siberian tiger white

 

 Re-population ideas

 Image result for siberian tiger white
Inspired by findings that the Amur tiger is the closest relative of the Caspian tiger, there has been discussion whether the Amur tiger could be an appropriate subspecies for reintroduction into a safe place in Central Asia. The Amu-Darya Delta was suggested as a potential site for such a project. A feasibility study was initiated to investigate if the area is suitable and if such an initiative would receive support from relevant decision makers. A viable tiger population of about 100 animals would require at least 5000 km2 (1930 sq mi) of large tracts of contiguous habitat with rich prey populations. Such habitat is not presently available in the Delta, and so cannot be provided in the short term. The proposed region is therefore unsuitable for the reintroduction, at least at this stage of development.[53]
A second possible introduction site in Kazakhstan is the Ili River delta at the southern edge of Lake Balkhash. The delta is situated between the Saryesik-Atyrau Desert and the Taukum Desert and forms a large wetland of about 8000 square kilometres. Until 1948, the delta was a refuge of the extinct Caspian tiger. Reintroduction of the Siberian tiger to the delta has been proposed. Large populations of wild boar, which were a main prey base of the Turan tiger, can be still found in the swamps of the delta. The reintroduction of the Buchara deer, which was once an important prey item is under consideration. The Ili delta is therefore considered as a suitable site for introduction.[54]
In 2010, Russia exchanged two captive Amur tigers for Persian leopards with the Iranian government, as conservation groups of both countries agreed on reintroducing these animals into the wild within the next five years. This issue is controversial since only 30% of such releases have been successful, and introducing exotic species into a new habitat can inflict irreversible and unknown damage.[55] In December 2010, one of the tigers exchanged died in Eram Zoo in Tehran.[56]
Future re-introduction is planned as part of the rewilding project at Pleistocene Park in the Kolyma river basin in northern Yakutia (Russia), providing the population of herbivores has reached a size warranting the introduction of large predators.[57][58][59]

 

 Image result for siberian tiger white

 In captivity

 Image result for siberian tiger white

 

 

 

Siberian tigress with cub in captivity
The large, distinctive and powerful cats are popular zoo exhibits. The Siberian tiger is bred under the auspices of the Species Survival Plan (SSP), in a project based on 83 tigers captured in the wild. According to most experts, this population is large enough to stay stable and genetically healthy. Today, approximately 160 Siberian tigers participate in the SSP, which makes it the most extensively bred tiger subspecies within the program. Developed in 1982, the Species Survival Plan for the Siberian tiger is the longest running program for a tiger subspecies. It has been very fortunate and productive, and the breeding program for the Siberian tiger has actually been used as a good example when new programs have been designed to save other animal species from extinction.[citation needed]

Siberian Tiger at Colchester Zoo
The Siberian tiger population in the framework of the European Endangered Species Programme numbers about 230 individuals, including wild-caught founders.[citation needed]
In recent years, captive breeding of tigers in China has accelerated to the point where the captive population of several tiger subspecies exceeds 4,000 animals. Three thousand specimens are reportedly held by 10–20 "significant" facilities, with the remainder scattered among some 200 facilities. This makes China home to the second largest captive tiger population in the world, after the US, which in 2005 had an estimated 4,692 captive tigers.[60] In a census conducted by the US based Feline Conservation Federation, 2,884 tigers were documented as residing in 468 American facilities.[61]
In 1986, the Chinese government established the world's largest Siberian tiger breeding base "Heilongjiang Northeast Tiger Forest Park (黑龙江东北虎林园)"[62] and was meant to build a Siberian tiger gene pool to ensure the genetic diversity of Siberian tigers. Liu Dan, Chief Engineer of the Heilongjiang Northeast Tiger Forest Park, introduced a measure such that the Park and its existing tiger population would be further divided into two parts, one as the protective species for genetic management and the other as the ornamental species. It was discovered that when the Heilongjiang Northeast Tiger Forest Park was founded it had only 8 tigers, but according to the current breeding rate of tigers at the park, the worldwide number of wild Siberian tigers will break through 1,000 in late 2010.[63]
South Korea expected to receive three tigers pledged for donation in 2009 by Russia in 2011.[64][65] South Korea may be able to rebuild a home for Siberian tigers.[66]

 Image result for siberian tiger white

 Genetic research


 Image result for siberian tiger white

Several reports have been published since the 1990s on the genetic makeup of the Siberian tiger and its relationship to other subspecies. One of the most important outcomes has been the discovery of low genetic variability in the wild population, especially when it comes to maternal or mitochondrial DNA lineages.[67] It seems that a single mtDNA haplotype almost completely dominates the maternal lineages of wild Siberian tigers. On the other hand, captive tigers appear to show higher mtDNA diversity. This may suggest that the subspecies has experienced a very recent genetic bottleneck caused by human pressure, with the founders of the captive population being captured when genetic variability was higher in the wild.[68][69]
Around the start of the 21st century, researchers from the University of Oxford, the U.S. National Cancer Institute and the Hebrew University of Jerusalem collected tissue samples from 23 Caspian tiger specimens kept in museums across Eurasia. They sequenced at least one segment of five mitochondrial genes, and observed a low amount of variability of the mitochondrial DNA in P. t. virgata as compared to other tiger subspecies. They re-assessed the phylogenetic relationships of tiger subspecies and observed a remarkable similarity between Caspian and Amur tiger indicating that the Amur tiger population is genetically the closest living relative of the extinct Caspian tiger, and strongly implying a very recent common ancestry for the two groups. Based on phylogeographic analysis they suggested that the ancestor of Caspian and Amur tigers colonized Central Asia via the GansuSilk Road region from eastern China less than 10,000 years ago, and subsequently traversed Siberia eastward to establish the Amur tiger in the Russian Far East. The actions of industrial age humans may have been the critical factor in the reciprocal isolation of Caspian and Amur tigers from what was likely a single contiguous population.[9]
Samples of 95 wild Amur tigers were collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, targeted individuals from the North American ex situ population were sampled to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, the researchers failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. The extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, their results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.[46]
Managers will be able to selectively breed to help preserve the unique and rare gene variants. This variation may be used to re-infuse the wild population sometime in the future if reintroduction strategies are deemed warranted.[70]
In 2013 the whole genome of the Siberian tiger was sequenced and published.[71]

Attacks on humans

See also: Tiger attack

A "Beware of Tigers" sign In Russian
The Siberian tiger very rarely becomes a man-eater.[10][26] Numerous cases of attacks on humans were recorded in the 19th century, occurring usually in central Asia excluding Turkmenistan, Kazakhstan and the Far East. Siberian tigers were historically rarely considered dangerous unless provoked, though in the lower reaches of the Syr-Darya, a tiger reportedly killed a woman collecting firewood and an unarmed military officer in the June period whilst passing through reed thickets. Attacks on shepherds were recorded in the lower reaches of Ili. In the Far East, during the middle and third quarter of the 19th century, attacks on people were recorded. In 1867 on the Tsymukha River, tigers killed 21 men and injured 6 others. In China's Jilin Province, tigers reportedly attacked woodsmen and coachmen, and occasionally entered cabins and dragged out both adults and children.[10]
According to the Japanese Police Bureau in Korea, a tiger killed only one human, whereas leopards killed three, wild boars four and wolves 48 in 1928.[72] Only six cases were recorded in 20th century Russia of unprovoked attacks leading to man-eating behaviour. Provoked attacks are however more common, usually the result of botched attempts at capturing them.[26]
In December 1997, an injured Amur tiger attacked, killed and consumed two people. Both attacks occurred in the Bikin River valley. The anti-poaching task force Inspection Tiger investigated both deaths, tracked down and killed the tiger.[73]
In January 2002, a man was attacked by a Siberian tiger on a remote mountain road near Hunchun in Jilin Province, China, near the borders of Russia and North Korea. He suffered compound fractures but managed to survive. When he sought medical attention, his story raised suspicions as Siberian tigers seldom attack humans. An investigation of the attack scene revealed that raw venison carried by the man was left untouched by the tiger. Officials suspected the man to be a poacher who provoked the attack.[74] The following morning, tiger sightings were reported by locals along the same road, and a local TV station did an on-site coverage. The group found tiger tracks and blood spoor in the snow at the attack scene and followed them for approximately 2,500 meters, hoping to catch a glimpse of the animal. Soon, the tiger was seen ambling slowly ahead of them. As the team tried to get closer for a better camera view, the tiger suddenly turned and charged, causing the four to flee in panic.[75] About an hour after that encounter, the tiger attacked and killed a 26-year-old woman on the same road.[76] Authorities retrieved the body with the help of a bulldozer. By then, the tiger was found lying 20 meters away, weak and barely alive.[77] It was successfully tranquilized and taken for examination, which revealed that the tiger was anemic and gravely injured by a poacher’s snare around its neck, with the steel wire cutting deeply down to the vertebrae, severing both trachea and esophagus. Despite extensive surgery by a team of veterinarians, the tiger died of wound infection.[78][79] Subsequent investigation of the first attack revealed that the first victim was a poacher who set multiple snares that caught both the tiger and a deer.[80] The man was later charged for poaching and harming endangered species. He served two years in prison.[81] After being released from prison, he worked in clearing the forest of old snares.[82]
In an incident at the San Francisco Zoo in December 2007, a Siberian tiger escaped and killed a visitor, and injured two others. The animal was shot by the police. The zoo was widely criticized for maintaining only a 12.5 ft (3.8 m) fence around the tiger enclosure, while the international standard is 16 ft (4.9 m). The zoo subsequently erected a taller barrier topped by an electric fence. One of the victims admitted to taunting the animal.[83]
Zookeepers in the Chinese provinces of Anhui, Shanghai, and Shenzhen respectively, were attacked and killed in 2010.[84]
In January 2011, a Siberian tiger attacked and killed a tour bus driver at a breeding park in the northern province of Heilongjiang, China. Park officials reported that the bus driver violated safety guidelines by leaving the vehicle to check on the condition of the bus.[85]
In September 2013, a Siberian tiger mauled a zookeeper to death at a zoo in western Germany after the worker forgot to lock a cage door during feeding time.[86]Image result for siberian tiger white

 

 Image result for siberian tiger white

 

In culture


A Siberian tiger in the heraldic arms of the Jewish Autonomous Oblast in Russia.

 Image result for siberian tiger white

THE LEOPARD

The leopard (Panthera pardus) (English pronunciation: /ˈlɛpərd/) is one of the five "big cats" in the genus Panthera. It is a member of the family Felidae with a wide range in sub-Saharan Africa and parts of Asia.[2] Fossil records found in Italy suggest that in the Pleistocene it ranged as far as Europe[3] and Japan.[4]
Compared to other members of Felidae, the leopard has relatively short legs and a long body with a large skull. It is similar in appearance to the jaguar, but has a smaller, lighter physique. Its fur is marked with rosettes similar to those of the jaguar, but the leopard's rosettes are smaller and more densely packed, and do not usually have central spots as the jaguar's do. Both leopards and jaguars that are melanistic are known as black panthers.
The leopard is distinguished by its well-camouflaged fur, opportunistic hunting behaviour, broad diet, and strength (which it uses to move heavy carcasses into trees), as well as its ability to adapt to various habitats ranging from rainforest to steppe, including arid and montane areas, and its ability to run at speeds of up to 58 kilometres per hour (36 mph).[5]
It is listed as vulnerable on the IUCN Red List because leopard populations are declining in large parts of their range.[6] They are threatened by habitat loss and pest control. Their habitats are fragmented and they are illegally hunted so that their pelts may be sold in wildlife trade for medicinal practices and decoration.[7] They have been extirpated in Hong Kong, Singapore, Kuwait, Syria, Libya, Tunisia and most likely Morocco.[8]
African Leopard 5.JPG

Etymology

 Image result for banded mongoose



The common name "leopard" (pronounced /ˈle-pərd/)[9] is a Greek compound of λέων leōn ("lion") and πάρδος pardos ("male panther"). The Greek word is related to Sanskrit पृदाकु pṛdāku ("snake", "tiger" or "panther"), and probably derives from a Mediterranean language, such as Egyptian.[10][11] The name was first used in the 13th century.[9] Other vernacular names for the leopard include graupanther, panther and several regional names such as tendwa in India.[12] The term "black panther" refers to leopards with melanistic genes.[13]
The scientific name of the leopard is Panthera pardus. The generic name Panthera derives from Latin via Greek πάνθηρ (pánthēr).[14] The term "panther", whose first recorded use dates back to the 13th century AD, generally refers to the leopard, and less often to the cougar and the jaguar.[13] Alternative origins suggested for Panthera include an Indo-Iranian word meaning "white-yellow" or "pale". In Sanskrit, this could have been derived from पाण्डर pāṇḍara ("tiger"), which in turn comes from पुण्डरीक puṇḍárīka (with the same meaning).[11][14] The specific name pardus is derived from the Greek πάρδος (pardos) ("male panther").[12]

Taxonomy


Two cladograms proposed for Panthera. The upper cladogram is based on the 2006 and 2009 studies, while the other is based on the 2010 and 2011 studies.
The leopard is one of the five extant species of the genus Panthera, which also includes the jaguar (P. onca), the lion (P. leo), the snow leopard (P. uncia; sometimes placed in Uncia, a separate genus of its own) and the tiger (P. tigris). This genus, along with the genus Neofelis - which consists of the clouded leopard (N. nebulosa) and the Sunda clouded leopard (N. dardi) - forms the subfamily Pantherinae of the Felidae.[15][16] The leopard was first described by Swedish zoologist Carl Linnaeus in the 10th edition of Systema Naturae (1758). Linnaeus named the leopard as Felis pardus, placing it in the genus Felis along with the domestic cat, the jaguar, the Eurasian lynx, the lion, the ocelot and the tiger.[17] In the 18th and 19th centuries, most naturalists and taxonomists followed his example. In 1816, Lorenz Oken proposed a definition of the genus Panthera, with a subgenus Panthera using F. pardus as a type species. Oken's classification, however, was not widely accepted, and until the early 20th century continued using Felis or Leopardus when describing leopard subspecies.[18] In 1916, British zoologist Reginald Innes Pocock accorded Panthera generic rank defining Panthera pardus as species.[19]
The leopard is part of the Panthera lineage, one of the eight lineages of Felidae. This lineage comprises the species of Panthera and Neofelis. The clouded leopard diverged first from the lineage, followed by the snow leopard. Subsequent branching began two to three million years ago, but the details of this are disputed. [20] A 2006 phylogenetic study by Warren E. Johnson (of the National Cancer Institute) and colleagues, based on nDNA and mtDNA analysis, showed that the leopard is sister to two clades within Panthera - one consisting of the tiger and the snow leopard, and the other of the lion and the jaguar.[21] This was seconded by a 2009 study by Lars Werdelin and colleagues.[22] However, the results obtained in a 2010 study by Brian W. Davis (of the Texas A&M University) and colleagues and a 2011 study by Ji H. Mazák (of the Shanghai Science and Technology Museum) and colleagues showed a swapping between the leopard and the jaguar in the cladogram.[23][24] Results of a 2001 phylogenetic analysis of chemical secretions amongst cats suggested, however, that the leopard is closely related to the lion.[25]

 Image result for leopard

 Subspecies


 Image result for leopard

As many as 27 leopard subspecies were subsequently described by naturalists from 1794 to 1956. Since 1996, only eight subspecies have been considered valid on the basis of mitochondrial analysis.[26] Later analysis revealed a ninth valid subspecies, the Arabian leopard. Because of limited sampling of African leopards, this number might be an underestimation.[27]
The nine subspecies recognised by IUCN are:[8][27][28]
Subspecies of leopard
Subspecies Description Image
African leopard (P. p. pardus) Lives in Sub-Saharan Africa. It is the most widespread subspecies of leopards.
Leopard (Panthera pardus).jpg
Indian leopard (P. p. fusca) Native to the Indian Subcontinent. It is widespread in India, Nepal, Bangladesh and Bhutan.
Nagarhole Kabini Karnataka India, Leopard September 2013.jpg
Arabian leopard (P. p. nimr), also known as Erythrean leopard Native to the Arabian Peninsula. It lives in arid areas of Saudi Arabia, Israel, Jordan, and the United Arab Emirates. It is the smallest leopard subspecies.
PikiWiki Israel 14861 judean desert leopard cropped.JPG
Persian leopard (P. p. saxicolor), also known as Central Asian leopard or Caucasian leopard Inhabits the Caucasus, Turkmenistan, Afghanistan, and northern Iran.[28] It is the largest leopard subspecies.
Leopard3.jpg
North-Chinese leopard (P. p. japonensis), also simply known as the Chinese leopard Only native to central to northern China. It is among the medium-sized leopard subspecies.
Panthera pardus japonensis JdP.jpg
Amur leopard (P. p. orientalis), also known as Far Eastern leopard or Siberian leopard Found today only in the cold regions of Russian Far East and Northeast China. It is the most critically endangered leopard subspecies, and one of the most endangered animals in the world. It is currently extinct in the Korean Peninsula.
Leopard in the Colchester Zoo.jpg
Indochinese leopard (P. p. delacouri), also known as South-Chinese leopard Widespread in mainland Southeast Asia and South China.
Indochinese leopard.jpg
Javan leopard (P. p. melas) The only subspecies native to Indonesia. It is found in the Indonesian Island of Java. It is among the most critically endangered leopard subspecies.
Panthera pardus melas (Tierpark Berlin) - 1006-888-(118).jpg
Sri Lankan leopard (P. p. kotiya) Found only in Sri Lanka.
Slleo1.jpg

Map of approximate distribution of leopard subspecies
A morphological analysis of characters of leopard skulls implies the validity of two more subspecies:[28]
The following African leopard populations used to be considered subspecies until 1996:[26][27]
The smallest leopard subspecies is the Arabian leopard. Adult females weigh as little as 18 kg (40 lb).[30] Large subspecies, in which males weigh up to 91 kg (201 lb), are the Sri Lankan leopard and the Persian leopard. Such larger leopards inhabit areas which lack tigers and lions, so that leopards are at the top of the food chain with no competitive restriction from large prey.[31]

Evolution

The last common ancestor of the Panthera and Neofelis species is believed to have occurred about 6.37 million years ago. The clouded leopard was the first to diverge from the rest of the Panthera lineage, followed by the snow leopard. The genus Panthera is believed to have emerged in Asia, from where they subsequently emigrated to Africa. The tiger-snow leopard clade diverged from the rest of Panthera around 2.9 million years ago.[23][24] Johnson and colleagues suggest that the leopard diverged next, and followed by the lion-jaguar clade.[21]
Fossils of ancestors of the leopard have been found in East Africa and South Asia, dating back to the Pleistocene between 2 and 3.5 million years ago. The modern leopard is suggested to have evolved in Africa 0.5 to 0.8 million years ago and to have radiated across Asia 0.2 to 0.3 million years ago.[27]
In Europe, the leopard is known at least since the Pleistocene. Fossil bones and teeth dating from the Pliocene were found in Perrier in France, northeast of London, and in Valdarno (Italy). Similar fossils dating back to the Pleistocene were excavated mostly in loess and caves at 40 sites in the continent - from near Lisbon, near Gibraltar, and Santander Province in northern Spain to several sites in France, Switzerland, Italy, Austria, Germany, in the north up to Derby in England, in the east to Přerov in the Czech Republic, and the Baranya in southern Hungary.[32] The Pleistocene leopards of Europe can be divided into four subsequent subspecies. The first European leopard subspecies P. p. begoueni is known from the beginning of the early Pleistocene and was replaced about 0.6 million years ago by P. p. sickenbergi, which in turn was replaced by P. p. antiqua around 0.3 million years ago. The most recent form, the Late Pleistocene Ice Age leopard (P. p. spelaea), appeared at the beginning of the Late Pleistocene and survived until about 24,000 years ago in several parts of Europe.[33]
Pleistocene fossils have also been excavated in Japanese Archipelago.[4]

Genetics

The diploid number of chromosomes in the leopard is 38, the same as in any other felid, save for the ocelot and the margay, whose diploid number of chromosomes is 36.[34] The chromosomes include four acrocentric, five metacentric, seven submetacentric and two telocentric pairs.[35]

Hybrids


Pumapard, 1904
Main article: Panthera hybrid
Crossbreeding between the leopard and the other members of the Panthera has been documented. In 1953, a lioness and a male leopard were mated in the Hanshin Park in Nishinomiya, Japan. The first litter from this pairing was born on 2 November 1959, consisting of a male and a female. Another litter was born in 1961, in which all the offspring were spotted and bigger than juvenile leopard. The hybrid came to be known as "leopon". Unsuccessful attempts were made to mate a leopon with a tigress.[36]
Although lions and leopards may come into contact in sub-Saharan Africa, they are generally not known to interbreed naturally. However, there have been anecdotal reports of felids larger than the cheetah but smaller than the lion, with a lion-like face, from the Central African Republic, Kenya, Rwanda and Uganda. This animal, known as the marozi and by several other names, is covered with grayish spots or rosettes on the back, the flanks and the legs. However, there have been no confirmed sightings of the marozi since the 1930s.[37]
A pumapard is a hybrid animal resulting from a mating between a leopard and a puma (a member of the genus Puma, not the genus Panthera). Three sets of these hybrids were bred in the late 1890s and early 1900s by Carl Hagenbeck at his animal park in Hamburg, Germany. While most of these animals did not reach adulthood, one of these was purchased in 1898 by the Berlin Zoo. A similar hybrid in the Berlin Zoo purchased from Hagenbeck was a cross between a male leopard and a female puma. A specimen in the Hamburg Zoo (in the photo at right) was the reverse pairing, fathered by a puma bred to an Indian leopardess. The pumapard is characterised by a long body like the puma's, but with shorter legs. The hybrid is in general dwarf, smaller than either parent. The coat is variously described as sandy, tawny or greyish with brown, chestnut or faded rosettes.[38]

Variant colouration


Main article: Black panther
Melanistic leopards are known, like the melanistic jaguars, as "black panthers". Pseudomelanism (abundism) also occurs in leopards.[39] Melanism in leopards is inherited as a trait relatively recessive to the spotted form.[40] Interbreeding in melanistic leopards produces a significantly smaller litter size than is produced by normal pairings.[41]
The black panther is common in the equatorial rainforest of Malaya and the tropical rainforest on the slopes of some African mountains such as Mount Kenya.[42] Between January 1996 and March 2009, Indochinese leopards were photographed at 16 sites in the Malay Peninsula in a sampling effort of more than 1000 trap nights. Of the 445 photographs of melanistic leopards, 410 came from study sites south of the Kra Isthmus, where the non-melanistic morph was never photographed. This data suggests the near fixation of the dark allele in the region. The expected time for the fixation of this recessive allele due to genetic drift alone ranged from about 1,100 years to about 100,000 years.[43][44]
A rare "strawberry" leopard was photographed in South Africa's Madikwe Game Reserve. This condition was probably caused by erythrism, a little-understood genetic condition that causes either an overproduction of red pigments or an underproduction of dark pigments.[45] Pseudomelanism has also been reported in leopard.[46]

Characteristics


African leopard at Serengeti National Park, Tanzania
The leopard is a big cat distinguished by its robust build and muscular but relatively shorter limbs, a broad head and a coat covered by spots arranged in rosettes. Males stand 60–70 cm (24–28 in) at the shoulder, while females are 57–64 cm (22–25 in) tall. The head-and-body length is typically between 90 and 190 cm (35 and 75 in). While males weigh 37–90 kg (82–198 lb), females weigh 28–60 kg (62–132 lb);[47][48] these measurements vary geographically.[12] The maximum recorded weight for a leopard is 96.5 kilograms (213 lb).[49][50] Sexually dimorphic, males are larger and heavier than females.[51]
Basically pale yellow to yellowish brown or golden (except for the melanistic forms), the coat is spotted and rosetted; spots fade toward the white underbelly and the insides and lower parts of the legs. Rosettes are most prominent on the back, flanks and hindquarters.[51] The pattern of the rosettes is unique to each individual.[52][53][54] Juveniles have woolly fur, and appear dark due to the densely arranged spots.[47] The white-tipped tail, 60–100 centimetres (24–39 in) long, white underneath, displays rosettes except toward the end, where the spots form incomplete bands.[51][52]
The texture and colour of the fur varies by climate and geography; leopards in forests are observed to be darker than those in deserts.[52] The guard hairs (the layer of hairs that protect the basal hairs) are the shortest (3–4 millimetres (0.12–0.16 in)) on the face and the head, and increase in length toward the flanks and the underparts (25–30 millimetres (0.98–1.18 in)). The fur is generally soft and thick; the fur on the underparts is notably softer than that on the back.[54] A few geographical variations have been noted in the colour and texture of the fur. Leopards in forests tend to be darker than those in deserts;[51] the fur tends to grow longer in populations living in colder climates.[12] The rosettes, circular in eastern African populations, tend to be squarish in southern Africa and larger in Asian populations. Their yellow coat tends to be more pale and cream coloured in desert populations, more gray in colder climates, and of a darker golden hue in rainforest habitats.[5]
The leopard is often confused with the cheetah; however, the cheetah is marked with small round spots instead of the larger rosettes.[55] Moreover, the leopard lacks the facial tear streaks characteristic of the cheetah.[56] Other similar species are the clouded leopard and jaguar. The clouded leopard can be told apart by the diffuse "clouds" of spots compared to the smaller and distinct rosettes of the leopard, longer legs and thinner tail.[57] The jaguar has rosettes that typically have spots within them, while those of leopards often do not. Moreover, the jaguar has larger and rounder foot pads and a larger and stronger skull.[12]

Distribution and habitat


Leopards on the Magerius Mosaic from modern Tunisia. Numerous Roman mosaics from North African sites depict fauna now found only in tropical Africa.[58]

A leopard and her cub on the tree in the Serengeti savanna.
Leopards have the largest distribution of any wild cat, occurring widely in Africa as well as eastern and southern Asia, although populations have shown a declining trend and are fragmented outside of sub-Saharan Africa. Within sub-Saharan Africa, the species is still numerous and even thriving in marginal habitats where other large cats have disappeared. Populations in North Africa may be extinct.[5] Data on their distribution in Asia are not consistent. Populations in southwest and central Asia are small and fragmented; in the northeast, they are critically endangered. In the Indian subcontinent, Southeast Asia, and China, leopards are still relatively abundant. Of the species as a whole, its numbers are greater than those of other Panthera species, all of which face more acute conservation concerns.[8][59]
Leopards are exceptionally adaptable, although associated primarily with savanna and rainforest. Populations thrive anywhere in the species range where grasslands, woodlands, and riverine forests remain largely undisturbed. In the Russian Far East, they inhabit temperate forests where winter temperatures reach a low of −25 °C (−13 °F).[27] They are equally adept surviving in some of the world's most humid rainforests and even semi-arid desert edges.
Leopards in west and central Asia try to avoid deserts, areas with long-duration snow cover and areas that are near urban development.[59] In India, leopard populations sometimes live quite close to human settlements and even in semi-developed areas.[60] Although occasionally adaptable to human disturbances, leopards require healthy prey populations and appropriate vegetative cover for hunting for prolonged survival and thus rarely linger in heavily developed areas.[59][60] Due to the leopard's superlative stealthiness, people often remain unaware that big cats live in nearby areas.[60]

Ecology and behaviour


Leopard resting on a tree
Leopards, like lions and tigers,[61][62] tend to be nocturnal (active mainly at night).[63][64] However, leopards in western African forests have been observed to be largely diurnal and hunt during twilight, when their prey animals are active; activity patterns may even vary by season.[65] Leopards generally are active mainly from dusk till dawn, and rest for most of the day and for some hours at night in thickets, among rocks or over tree branches. Leopards have been observed walking 1–25 kilometres (0.62–15.53 mi) across their range at night; they may even wander up to 75 kilometres (47 mi) if disturbed.[47][48]
Leopards are known for their ability to climb and have been observed resting on tree branches during the day, dragging their kills up trees and hanging them there, and descending from trees headfirst.[66] They are powerful swimmers, although are not as disposed to swimming as some other big cats, such as the tiger. They are very agile, and can run at over 58 kilometres per hour (36 mph), leap over 6 metres (20 ft) horizontally, and jump up to 3 metres (9.8 ft) vertically.[67] They produce a number of vocalisations, including grunts, roars, growls, meows, and purrs.[47]

Social organisation and territories

Leopard visual communication
Female showing white spots on the back of the ears (ocelli) used to communicate with other leopards.[68]
Female leopard showing the white spot on the tail used for communicating with cubs while hunting or in long grass.[68]
The leopard is solitary and territorial, as are several other felids; individuals associate appreciably only in the mating season, though mothers may continue to interact with their offspring even after weaning. Mothers have been observed sharing kills with their offspring when they can not obtain any meal.[47] In Kruger National Park, most leopards tend to keep 1 kilometre (0.62 mi) apart.[48] Fathers may interact with their partners and cubs at times.[69] Aggressive encounters are rare, typically limited to defending territories from intruders.[12] In a South African reserve, a male was wounded in a male–male territorial battle over a carcass.[70] A few instances of cannibalism have been reported.[71][72]
Males occupy territories that often overlap with a few smaller female territories, probably as a strategy to enhance access to females. A radio-collar analysis in the Ivory Coast found a female home range completely enclosed within a male's.[73] Female live with their cubs in territories that overlap extensively – probably due to the association between mothers and their offspring. There may be a few other fluctuating territories, belonging to young individuals. It is not clear if male territories tend to overlap among themselves as much as those of females do. Individuals will try to drive away intruders of the same sex.[47][48]
A study of leopards in the Namibian farmlands showed that the size of territories was not significantly affected by sex, rainfall patterns or season; it concluded that the higher the prey availability in an area, the greater the population density of leopards and the smaller the size of territories, but territories tend to expand if there is human interference (which has been notably high in the study area).[74] Territorial sizes vary geographically; they can be as small as 33–38 square kilometres (13–15 sq mi) for males and 14–16 square kilometres (5.4–6.2 sq mi) for females in forests and rocky terrain (such as in the Serengeti or Kruger National Park),[75][76] or as large as 451 square kilometres (174 sq mi) for males and 188 square kilometres (73 sq mi) for females in northeastern Namibia[77] (they might be even larger in deserts and montane areas).[12] Territories recorded in Nepal, 48 square kilometres (19 sq mi) for males and 5–7 square kilometres (1.9–2.7 sq mi) for females, are smaller than those generally observed in Africa.[78]

Hunting and diet

Stages of leopard hunting prey
Stalking
Killing young bushbuck
Dragging kill
Caching kill in a tree
The leopard is a carnivore that prefers medium-sized prey with a body mass ranging from 10–40 kilograms (22–88 lb). A study noted that prey animals in this weight range tend to occur in dense habitat, form small herds and can be easily captured by the leopard; on the other hand, animals that prefer open areas and have developed significant anti-predator strategies are hardly preferred.[79] Prey as heavy as 150 kilograms (330 lb) (such as greater kudu and giraffe) may be hunted if larger carnivores such as lions are absent;[79][80] the largest prey killed by a leopard was reportedly a 900 kg (2,000 lb) male eland.[81] Leopards can feed on a broad variety of prey, mainly antelopes, deer and rodents; these include: cattle, chital, duiker, dung beetle, hartebeest, hyrax, impala, muntjac, nyala, porcupine, primates, rat, reedbuck, springbok, squirrel, waterbuck, warthog and wildebeest.[79][82][83] Mothers primarily target smaller prey.[12]
A study at Wolong Reserve in China demonstrated variation in the leopards' diet over time; over the course of seven years, the vegetative cover receded, and the animals opportunistically shifted from primarily consuming tufted deer to pursuing bamboo rats and other smaller prey.[84] A study estimated average daily consumption rates at 3.5 kg (7.7 lb) for males and 2.8 kg (6.2 lb) for females.[85] A study of leopards in the southern Kalahari showed that water requirements are met by the bodily fluids of the prey, succulent plants and water bodies; they drink water every two to three days, and feed infrequently on moisture-rich plants such as gemsbok cucumbers (Acanthosicyos naudinianus), tsamma melon (Citrullus lanatus) and Kalahari sour grass (Schmidtia kalahariensis).[86] A few instances of cannibalism have been reported.[71]
The leopard depends mainly on its acute sense of hearing and vision for hunting.[87] Hunting is primarily a nocturnal activity in most areas,[47] though leopards in western African forests and Tsavo have been observed hunting by the day.[88] It will stalk the prey and try to approach as close as possible (typically within 5 metres (16 ft)) to the target, and finally pounce on it with its forepaws (unlike the lion, that pounces as the prey starts escaping) and kill it by suffocation. Small prey are killed with a bite on the back of the neck, while larger animals are held strongly by the neck and strangled.[47][48]
Small kills are eaten immediately, while larger carcasses are dragged over several hundred metres and safely cached to be consumed later on trees, in bushes or even caves. The way the kill is stored to be consumed later depends on the local topography and individual preferences; while trees are preferred in Kruger National Park, bushes are preferred in the plain terrain of the Kalahari.[12][89] Kills are cached up to 2 kilometres (6,600 ft) apart.[69] Although they are smaller than most other members of its genus, leopards are able to take large prey due to their massive skulls that facilitate powerful jaw muscles.[49][90] Leopards are strong enough to drag carcasses heavier than themselves up trees; an individual was seen to haul a young giraffe, nearly 125 kg (276 lb), up 5.7 m (19 ft) into a tree.[88]

 Image result for leopard

 

Enemies and competitors

 Image result for leopard and goat



Leopards must compete for food and shelter with other large predators such as tigers, lions, spotted hyenas, striped hyenas, brown hyenas, up to five species of bear and both African and Asiatic wild dogs. These animals may steal the leopard's kill, devour its young or even kill adult leopards. Leopards co-exist alongside these other large predators by hunting for different types of prey and by avoiding areas frequented by them. Leopards may also retreat up a tree in the face of direct aggression from other large carnivores but leopards have been seen to either kill or prey on competitors such as black-backed jackal, African wild cat and the cubs of lions, cheetahs, hyenas, and wild dogs.[5]

Lioness stealing a leopard kill
Resource partitioning occurs where leopards share their range with tigers. Leopards tend to take smaller prey, usually less than 75 kg (165 lb), where tigers are present.[5] In areas where the leopard is sympatric with the tiger, coexistence is reportedly not the general rule, with leopards being few where tigers are numerous.[91] The mean leopard density decreased significantly (from 9.76 animals/100km2 to 2.07 animals/100km2) when the mean density of tigers increased (from 3.31 animals/100km2 to 5.81 animals/100km2) from 2004-5 to 2007-8 in the Rajaji National Park in India following the relocation of pastoralists out of the park.[92] There, the two species have high dietary overlap, and an increase in the tiger population resulted in a sharp decrease in the leopard population and a shift in the leopard diet to small prey (from 9% to 36%) and domestic prey (from 6.8% to 31.8%).[92] In the Primore region of the Russian Far East, Amur leopards were absent or very rarely encountered at places where Siberian tigers reside.[93] However, in the Chitwan National Park in Nepal, both species coexist because there is a large prey biomass, a large proportion of prey is of the smaller sizes, and dense vegetation exists.[94] Here leopards killed prey ranging from less than 25 kg (55 lb) to 100 kg (220 lb) in weight with most kills in the 25–50 kg (55–110 lb) range; tigers killed more prey in the 50–100 kg (110–220 lb) range.[94] There were also differences in the microhabitat preferences of the individual tiger and leopard followed over 5-month (December to April) period in this study - the tiger used roads and (except in February) forested areas more frequently, while the leopard used recently burned areas and open areas more frequently [95] Usually when a tiger began to kill baits at sites formerly frequented by leopards, the leopards would no longer come and kill there.[96] In the tropical forests of India's Nagarhole National Park, tigers selected prey weighing more than 176 kg (388 lb), whereas leopards selected prey in the 30–175 kg (66–386 lb) range.[97] In tropical forest they do not always avoid the larger cats by hunting at different times. With relatively abundant prey and differences in the size of prey selected, tigers and leopards seem to successfully coexist without competitive exclusion or inter-species dominance hierarchies that may be more common to the leopard's co-existence with the lion in savanna habitats.[98] In areas with high tiger populations, such as in the central parts of India's Kanha National Park, leopards are not permanent residents, but transients. They were common near villages at the periphery of the park and outside the park.[96]
In some areas of Africa, troops of large baboon species (potential leopard prey themselves) will kill and sometimes eat leopard young if they discover them.[99] Occasionally, Nile crocodiles may prey on leopards of any age. For example, one large adult leopard was grabbed and consumed by a large crocodile while attempting to hunt along a bank in Kruger National Park.[100][101][102] Mugger crocodiles may also on rare occasions kill an adult leopard in India.[103] Lions are occasionally successful in climbing trees and fetching leopard kills,[89] but leopards are also known to kill or prey on cubs of lions.[5] In the Kalahari desert, leopards frequently lose kills to the brown hyena, if the leopard is unable to move the kill into a tree. Single brown hyenas have been observed charging at and displacing male leopards from kills.[104][105] Burmese pythons have been known to prey on leopards, with an adult cat having been recovered from the stomach of a 5.5 m (18 ft) specimen.[106]
Two cases of leopards killing cheetahs have been reported in 2014.[107][108]

Reproduction and life cycle

Depending on the region, leopards may mate all year round. In Manchuria and Siberia, they mate during January and February. The estrous cycle lasts about 46 days and the female usually is in heat for 6–7 days.[109] Gestation lasts for 90 to 105 days.[110] Cubs are usually born in a litter of 2–4 cubs.[111] Mortality of cubs is estimated at 41–50% during the first year.[85]
Females give birth in a cave, crevice among boulders, hollow tree, or thicket to make a den. Cubs are born with closed eyes, which open four to nine days after birth.[81] The fur of the young tends to be longer and thicker than that of adults. Their pelage is also more gray in colour with less defined spots. Around three months of age, the young begin to follow the mother on hunts. At one year of age, leopard young can probably fend for themselves, but remain with the mother for 18–24 months.[66]
The average typical life span of a leopard is between 12 and 17 years.[112] The oldest recorded spotted leopard was a female named Roxanne living in captivity at McCarthy's Wildlife Sanctuary in The Acreage, Palm Beach County, Florida. She died August 8, 2014 at the age of 24 years, 2 months and 13 days. This has been verified by the Guinness World Records.[113] Previously, the oldest recorded leopard was a female named Bertie living in captivity in Warsaw Zoo. She died in December 2010 at the age of 24.[114] The oldest recorded male leopard was Cezar, who reached the age of 23. He also lived at Warsaw Zoo and was Bertie's lifelong companion.[115]

Leopards and humans

  Image result for siberian tiger white

  Heraldry

Main article: Leopard (heraldry)

Three leopards (loggerheads) on the flag of Shropshire, England.
The lion passant guardant or leopard is a frequently used charge in heraldry, most commonly appearing in groups of three.[116] The heraldic leopard lacks spots and sports a mane, making it visually almost identical to the heraldic lion, and the two are often used interchangeably. These traditional lions passant guardant appear in the coat of arms of England and many of its former colonies; more modern naturalistic (leopard-like) depictions appear on the coat of arms of several African nations including Benin, Malawi, Somalia, the Democratic Republic of the Congo and Gabon, which uses a black panther.[117]
Leopards have been known to humans throughout history, and have featured in the art, mythology, and folklore of many countries where they have historically occurred, such as ancient Greece, Persia, and Rome, as well as some where they have not existed for several millennia, such as England. The modern use of the leopard as an emblem for sport or a coat of arms is much more restricted to Africa, though numerous products worldwide have used the name. During the Benin Empire, the leopard was commonly represented on engravings and was used to symbolise the power of the king or oba; since the leopard was considered the king of the forest. Leopard were also kept and paraded as mascots and sacrificed to deities.[118]
Leopard domestication has also been recorded—several leopards were kept in a menagerie established by King John at the Tower of London in the 13th century; around 1235, three of these animals were given to Henry III by Holy Roman Emperor Frederick II.[119]

Tourism


A female leopard in the Sabi Sands of South Africa near a game vehicle
In protected areas of several countries, wildlife touring programs and safari ventures offer sightings of leopards in their natural habitat. While luxury establishments may boast the fact that wild animals can be seen at close range on a daily basis, the leopard's camouflage and propensity to hide and stalk prey typically make leopard sightings rare.[120] In Sri Lanka's Yala National Park, leopards have been ranked by visitors to be among the least visible of all animals in the park despite their high concentration in the reserve.[121]
In South Africa, safaris are offered in the Sabi Sand Game Reserve. In Sri Lanka, wildlife tours are available in the Yala and Wilpattu National Parks. In India, safaris are offered in the Madhya Pradesh and Uttarakhand national parks as well as in the Pali district of western Rajasthan.[122]

Man-eating

Main article: Leopard attack

The Panar Leopard, shot by Jim Corbett in 1910 after allegedly killing 400 people
Most leopards avoid people, but humans may occasionally be targeted as prey. Most healthy leopards prefer wild prey to humans, but injured, sickly, or struggling cats or those with a shortage of regular prey may resort to hunting humans and become habituated to it. Although usually slightly smaller than humans, an adult leopard is much more powerful and easily capable of killing them. Two extreme cases occurred in India: the first leopard, "the Leopard of Rudraprayag", killed more than 125 people; the second, the "Panar Leopard", was believed to have killed more than 400. Both were killed by the renowned hunter Jim Corbett.[123] Man-eating leopards are considered bold and difficult to track by feline standards and may enter human settlements for prey, more so than lions and tigers.[124] Author and big game hunter Kenneth Anderson had first-hand experience with many man-eating leopards, and described them as far more threatening than tigers:
Although examples of such animals are comparatively rare, when they do occur they depict the panther [leopard] as an engine of destruction quite equal to his far larger cousin, the tiger. Because of his smaller size he can conceal himself in places impossible to a tiger, his need for water is far less, and in veritable demoniac cunning and daring, coupled with the uncanny sense of self-preservation and stealthy disappearance when danger threatens, he has no equal.
— Kenneth Anderson, Nine Man-Eaters and One Rogue, Chapter II "The Spotted Devil of Gummalapur"
There is something very terrifying in the angry grunt of a charging leopard, and I have seen a line of elephants that were staunch to a tiger, turn and stampede from a charging leopard.
— Jim Corbett, The Temple Tiger and More Man-Eaters of Kumaon, chapter "The Panar Man-Eater"

  Image result for siberian tiger white

 

 

In popular culture